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A COLUMN GENERATION TECHNIQUE FOR THE

COMPUTATION OF STATIONARY POINTS

Jong-Shi Pang

ABSTRACT. In two recent papers, Eaves shoved that Lemke's algorithm
can be used to compute a stationary point of an affine function over a
polyhedral set. This paper proposes an alternative method which {s

based on parametric principal pivoting. The proposed method involves

solving systems of linear equations and parametric linear subprograms
over the given polyhedral set. An obvious advantage of the method is
that any special structure of the polvhedral set can be exploited

profitably in the solution of the subprograms.




Given a polyhedral set

n .
X = {x€R r Cx 3]
and an affine mapping
F(x) = b + Ax

from Rn into Rn. the stationary point problem is to find a vector u€Xx

such that the condition below is sazisfied
1) (x -u)r F(u 2 0 for all x€X

Such a4 vector u {s called a stationary point.

As pointed out by Eaves [3], the stationary point problem is central
to the solution of certain quadratic programs, matrix games and economic
equilibrium. An {mportant special case of the problem is where the
set X is a polyhedral -one. In this case, it has been shown (see [6]

e.8. ) that the stationary point problem {3 equivalent to the

generalized linear complementarity problem: find u€X such that
p
F(u) €X* and u F(u) =0

where X* {s the dual cone of X, {.e.,

x* = {y€r" : yrxzo for all x€X] .

In the reference, Eaves showed that Lemke's algorithm can be used
to solve the stationary point problem. His method of analysis can be
briefly summarized as follows. First observe that the stationary point

problem (1.1) i{s equivalent to finding vectors u, s and t such that
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Cu -s =¢ . b + Au + CT: = 0

s, t > 0 and src e

He then adjoins an additional set of constraints Bx L @ so that the

system

Cx 2¢ = Bx s e

has a unique solution in the polyhedron X. Next, he applies complementary

pivoting to the augmented system

Cu - s - c b + Au + CTt + BTU = 0
Bu+y -e8 =a srt = yTv =0
s 2 0, ¢t > 2 T | 2 0 : v 2> 0

starting with 9 equal to zero and increasing 8 to infinity. 1In a finite
aumber of pivots, the algorithm terminates either on a ray or with a
desired stationary point to the given problem. Basically, no specific

assumption {s needed to operate the algorithm.

In a related paper [4], Eaves describes another way to start Lemke's

algorithm for solving the same problem.

Qur purpose in the present paper is to propose an alternative
approach for solving the stationary point problem. The approach is based
on parametric principal pivoting. The ideas involved are briefly sketched
as follows., 3By using the representation of X in terms of {ts extreme
points and rays, {t {s first shown that the stationary point problem can
be converted into an equivalent linear complementarity problem. Under
a certain positive semi-definiteness assumption on the matrix A, the
resulting linear complementarity problem has a positive semi-definite
matrix. Consequently, the parametric principal pivoting algorithm [2, 7] is ;

applicable. The application, however, is crucially dependent on the

e s L t——————
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knowledge of the set of extreme points and rays of X. As the task of
generating all these points and rays is practically impossible, it is
therefore important to be able to implement the algorithm without the
full knowledge of the generators. By means of a column generation
technique similar to the one in linear programming, we shall show how

the useful components can be generated when they are needed, thereby
establishing the applicability of the parametric principal pivoting
algorithm for solving the stationary point problem. We shall also discuss
a considerably simplified version of this algorithm applicable to the

case where the matrix A is positive definite.
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2. AN EQUIVALENT LINEAR COMPLEMENTARITY PROBLEM

Since X is polyhedral, there exists a finite set of vectors

{P‘.....Pm : Ql""'QL} so that {f P and Q denote respectively, the n by m

and n by { matrices whose columns are the P, and Q,, then we have

B b

Q2.1 X={(x€R® :xaPN+Qf : 7,230 and el =1)

where e {s a vector of ones. Each Pi (Q,) is an extreme point (ray

b

respectively) of X.

It is obvious that the vector u is a stationary point if and only

{f it solves the linear program

ainimize xTF(u) subject to x€X .

Under the representation (2.1), the latter program is equivalent to the

one below

minimize (F(u)tP)‘ -~ (F(u)TQ)g subdject to 7, § 2 0 and eI, = 1

By the duality theory of linear programming and by recalling that
F(u) = b + Au, it follows that u = P7* 4+ QE+ with 7% Ex 2 0 and
e'=* = 1 {s a stat{onary point if and only if (=%, %%*) and some suitable X+

and \  solves the linear complementarity problem below

(2.2) c=?b+papm+rTAQt - AtesaTe 30 =30
~ = Q'b + QTAP™ + Q7AQL 20 £20
AR RTE 58 X3
b el = aM 0 A 30
s et e GHRT e wHT A 0.




In other words, the stationary point problem can always be cast, theoretically,

as an ordinary linear complementarity problem of the form

T

2.3) wegqg+M >0 ¥ z2>0 and wz =0

L B

where the vector q and matrix M are given by

(2.4) Q=P M PTAP PAQ -s o \
Qb i Q% Q@ o0 o |
-1 k eT 0 0 0 }

y L BP0 0 e o/ .

It should be pointed out that the derivation of this equivalent
linear complementarity problem does not require any assumption on the

set X and the matrix A.

Wik
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[ THE PARAMETRIC PRINCIPAL PIVOTING ALGORITHM

Throughout thi. paper, we assume that the matrix A {s positive semi-
definite over the linear subspace spanned by the set X. (This assumption
is much weaker than that of a positive semi-definite A.) It is not
difficult to show that this assumption {s equivalent to the fact that the

matrix

[pTar  PTaQ\ = [T\ ACQ
:

\

\QTar  Q'aq Q"

is positive semi-definite. Thus, so is the matrix M in (2.4). 1In
particular, the parametric principal pivoting algorithm [2, 7] can be used
to solve the linear complementarity problem (2.2). However, this approach
{s certainly ineffective i{f {t {s necessary to know the whole matrices P
and Q. To demonstrate how the algorithm can be implemented without the
full knowledge of these matrices of generators, we first state a version
of the algorithm which operates by updating the constant and parametric

colums only.

The Parametric Principal Pivoting Algor{thm.

Step 0 (Initialization) Let J = @ and let I be the complement of J.

Step ! (Computing the basic components) Solve the system of linear equational/

for (51. 5J):

(’3-“) HJJ(QJ ’ PJ) = il (qJ ’ PJ)-

1/ 1f M is a matrix and K and L are index sets, by MKL we mean the submatrix

of M whose columms and rows are indexed by K and L respectively. A
similar notation is used for vectors.
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Step 2 (Computing the nonbasic components) Compute

1 1., p.) = e
(3.1b) (qI. px) (qI. pr) + .‘lIJ(qJ. PJ)

P
Step 3 (Ratio test) If the vector p -'\SI) i{s nonpositive, terminate
" §

with the solution

(3.2) Zh = z = 0

to the linear complementarity problem (2.3). Otherwise determine

1.3) g mmax [ -q. /p PR
( | qj Pj Pj 0

and let k be a maximizing fnmdex. If & o 0, terminate with rhe solution
given by (3.2). If 38 > 0, continue.

Step & (Check pivot element) There are two cases

(1) k€J. Solve the system of linear equations for £J s

ook ~ 3
(3.4a) HJJfJ e

where e* {s a unit vector with a one in component k. Compute
p

(3.4bH) (I - &lJfJ
(11) k§J. Solve the system of linear equations for £, :

(3.5a) M, L, ==}

v e AN R TR

—



and compute

(3.5b) fI = ka - MIJfJ .

In either case, if fk = 0 go to Step 5. Otherwise continue,.

Step 5 (1x1 diagonal pivot) Set

Jaew * ,rlom Lk SN ERY
} \ Tk}
\Jold 28 otherwise.
Go to Step !
¥
. ‘)
Step 6 ( 2x2 block pivot) If the vector f = £ ) {s nonnegative,
J

stop, the complementarity problem (2.3) is infeasible. Otherwise

determine another index { by

£y 6) - 8 ap ) / e min { - (g Ny . 1
(3.6) (qL + -pL\ fL min ! (qi + Bpi\ fi : f1 <0

with & being computed in (3.3). Set

-

dosw * Jo14 \ ik, £] {(f k, I.GJold
W I \ (e} U 1) 1f K€J  , and L;Jold
Joga | fL} U ) 1f L€J ,, and ngold
{_ Joga v Tk, 2) otherwise .

Go to Step 1.

In the description of the algorithm above, J {s the index set of the




basic z-variables (cf. (2.3)), & {s the nonnegative parameter to be driven

I

s
to zero and p is any vector satisfying the condition: q +8 p 2 0 for
*
some 3 > O.
-
Rigorously speaking, cycling could occur in the algorithm. Often

this can be prevented by a lexicographic or least-index rule [1].

According to a basic result {n pivotal algebra, the '"basi{s matrix"

M {s nonsingular throughout the algorithm. Referring to the linear

JJ
complementarity problem (2.2), the nonsingularity of MJJ implies, among

other things, that the numbers of basic 7 - and §-variables are bounded

by n+ 1 and n respectively. (Recall that n i{s the order of the matrix A.)
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s THE COLUMN GENERATION TECHNIQUE

In this section, we show how the parametric principal pivoting
algorithm described in the >2st section can be operated if the matrices P
and Q are known only implicitly.

As pointed out at the end of the last section, at each iteration,
there is a reasonable limit of information pertaining to the basic components.
Consequently they can be stored without difficulty. However, it {s
necessary to derive an alternate way to handle the nonbasic components.
From the description of the algorithm, {t is obvious that these components
are needed for the determination of the indices k and L and the corresponding
columms HJ& and HJL' As a matter of fact, the latter i{ndices and columns
are the key substances that one wishes to cobtain at the end of the {teration.
Consequently, {f they can be determined without the complete knowledge of
the nonbasic components, then one can operate the algorithm readily. In
what follows, we demonstrate how this important step can be accomplished
by means of a column generation technique.

Before starting, we would like to say a few words about the choice
of the parametric vector p. Ia principle, {t can be any vector satisfying
the -ondition that q + E*p {s nonnegative for some nonnegative ¢¥. The
latter cond{zi{on ensures a valid start of the algorithm. However, in the
prese¢nt situation where the vector q i{s known only implicitly, the choice

of p tumms out to be quite crucial. This will become obvious in the

analysis below.

78 The Bounded Case, we divide our discussion into two cases

depending on whether the set X {5 bounded. We first consider the case




1"

where the X is bounded. In this case, the linear complementarity problem

(2.2) reduces cto

4.1 s=PTb+PTAPT - e+iTe 20 120
phomel 4 ety 20 >0
- ‘!' '
p =1 -e™Y 20 4 20
. . - T + L L

o= )y = ()

For the parametric vector, we choose p = (eT. 1.0}
Recall that the objective for the ratio test in Step 3 i{s to determine
a new critical value of the parameter 3 such that vector q + ;;'a (whose
components give the updated values of the currently basic variables) will
remain nonnegative. Let K denote the index set of the currently basic
“-variables. To keer the notations simple, we assume that both ‘\* and %\
are nonbasic. (Notice that % and % cannot be simultaneously basic.)

The basi{s =matrix (s

; Y 1
.‘(n l.PK\ A PK

where P‘; denotes the columns of P {ndexed by K. According to (3.1b), the

nonbasic components are given by

(@4py) = (Pi)rb ez \ + <ri)rnk @y By

;7
-1 1 .K

-
.

K

1 0 -e
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where X denotes the complement of K and PE the columns of P {ndexed by

K . dHence, 'c.; + -‘-;;\Y is nonnegative if and only if
(6.2a) = h+AP. R + A P.] % = Vo
K K 'K | B e K
(«.2b) “ié aa + 8 (1«75 y> 0
k % kP’ a
(4.2¢) § oo R B
: S Vg 2O

Among these three conditions only the first one (4.2a) requires special
attention because it {nvolves the (unknown) matrix Pf' Obviously, it

follows from (3.la) that for all values of =,

4 3 = - 5 - -
(4.3) (P) [b+AP q + “AP P ] ey

Thus (4.2a) holds {f and only {f
(P)T [b+AP G+ 8AP P ] > - c e
-l S Sl -

or equivalently

T -
& 1 - @
x [b+AP - APKpK.Z for all x¢ X

xx

Observe how the parametric vector is being used to derive this last

inequality. 4
Consequently to determine the first value of & for which (4.2a) is g

violated, one may proceed as follows: Solve the parametric linear program

: L. T = ~

{4.6) ainimize L (%) = x [b+A pqu«»» APK pK] subject to x ¢ X

starting with the last critical value of = for which the inequality below {s

satisfied

(4.5) LI(“) + 3 s 0
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and decreasing the parameter until either it reaches below zero or a

value e and a corresponding vector Pk - is obtained for which the

l
inequality (4.5) is violated. For notati{onal convenience, we let —~l be

rero Lf © reaches zero before the violation of the inequality. Notice

that the vector Pk is an optimal solution to the linear program (4.4)
1

with 2 -51. 1t {s important to point out that {f él is positive, the
index k1 obtained must be in K because equality inm (4.3) holds for all

values of =.

with the value '51 availabdle, the ratio test (3.3) can now be implemented

as follows: Determine

-

- g o
= max -q

/p T e xl
§ Pj t>j v 4 ]
3 T - T~ T-
- - ( - Y/ ¢
3 (1 qux, 'KPK { .KPK':O
T- T- T -
- (- 2 )/ f - 0
( 1¢chK (1‘0KpK\ { X<0prs
- ® otherwise
and then set
& A . I R
(4.5) 4 » max(s 8 8
This fi{nal value ~+ would give the desired new critical value. The maxi-

2izing (ndex k can be determined in an obvious manner.

Essentially, the same analysis can be applied {f either .\‘ or 1 is
basic. One may still implement the ratio test (3.3) by solving the same
parametric linear program and by comparing the ratios among the basic
components. A noteworthy point {s that the {nequality to be checked in

this instance would be slightly different from (4.5), however.
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Having performed the first ratio test, we proceed to show how the
second one (3.6) can be carried out without the explicit knowledge of
the whole matrix P. Before doing this, we point out that the column
MJk required in (3.5a) is easy to generate once the maximizing index k
i{s determined.

Recall that the ratio test in (3.6) is to determine the largest value
2 20 sc that the vector (i + = ;;) + o £ remains nonnegative. Here

denotes that variable corresponding to the index k. To be specific

we assume that '« {3 equal to the index k, introduced earlier. Then,

by (3.1b) and (3.5b) we have

- - T - =
( a -~ f - = oF, ~ -
(q + p)I +o f ] (PK\ [b*APKqRo A?,px+.(APk+APR£K)]+eeK

: K
T- T - T
-1+.quo~(1+cx pK)+,(1+¢K£K)
R RN P
K'K K"K 3 K K

8y using a similar analysis and by noting that the equality below {s

valid for all values of ;, namely

P 3 g P+ ol £.) a
(PK {boAPKqK* APKPR APk¢APK K,]+ e " 4 "

one may easily obtain the minimum ratio (3.6) in the following manner:

Solve the parametric linear program

(4.7) minimize Lz(:)-xT[b«o-APa +8AP P+ (AP, +AP_f_ )] subject to x ¢ ¥
KK i St Tt 5 - i

starting with the value ¢ =0 for which the {nequality below is satisfied

"
(4.8) L) +2 >0
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1
and increasing the parameter . until (4.8) is violated. Let ¢ Ue the
first such value obtained and let Pl be the corresponding optimal
1l
solution vector. 1If (4.8) remains satisfied for all values of p, set :1-0.

* Next, determine

-
T - l-(q “p g By 39
% g ain (q1¢ pi)/fi g < 0 {€K;

g SR g TRy T T
- { 1*.qu#'(1+QKPK)’/“"ka) if l+erx<0

T- T- T T

= < 8 / £y £
[l-eKqK AerK] (1¢eK K if l+eK K\O

- otherwise

and then set

e« min

The desired {ndex I can now be determined in an obvious manner.
Again, the same analysis can be applied {f the maximum {n (4.6)
occurs at ‘3' f.e., if either .\‘ or x' is becoming basic. In this case,

the parametric linear program (4.7) and the inequality (4.8) would be

slightly changed but the essential {dea would remain unchanged.
We point out that {f X {s the final index set of basic T-variables
obtained at termination of the algorithm, then a solution to the stationary

point problem {s given by u-PK‘,*,‘. which can be computed easily.

4.2 The Positive Definite Case. A considerably simplified version of the

parametric principal pivoting algorithm can be used {f the set X {s
bounded an? ‘I the matrix A {s positive definite. The simplification stems

from the fact that the linear complementarity problem (4.1) has an obvious
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reformulation under which the algorithm will never perform the 2x 2 pivots.
In particular, only one parametric linear program needs to be solved.
t is obvicus that the linear complementarity problem (4.1) is

equivalent to the following one: find A and T such that

(5.9a) c = P'b + ke + PIAP™ >0 ngo o' = 0
(4.9b) 1 =eln and A unrestricted.

Condition (4.9a) constitutes a parametric linear complementarity
problem (with L\ as the parameter) to which the parametric principal pivoting
algorithm {s applicable. Concerning this application, we have the following

result whose proof can be found in the reference cited.

Theorem !. (Kaneko and Pang (5]) Suppose that the matrix A is positive
definite. Consider the applicatcion of the parametric principal pivoting
algorithm to the parametric linear complementarity problem (4.%a). Then
each diagonal pivot entry fk (cf. Step & of the algorithm) is positive and
thus the 2x2 block pivots are redundant. In particular, the algorithm will
always compute a solution to the problem for all values of A. Let 7*(})
denote the solution obtained as a function of \.

It is {mportant to point out that for each A\, "*(\) may not be the
only solution to the linear complementarity problem (4.%9a). 1In the rest

of this subsection, we assume that A {s positive definite.

Taking into consideration the condition (4.9b), we have

Theorem 2. Suppose that problem (4.9) has a solution (3, %) with

L # 0. Then each solution =% to the linear complementarity problem (4.9%a)
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with A\ = 1 also satisfies (4.9b). 1In particular, so does the solution

~%(1) obtained in Theorem 1.

Proof. Subtracting the two equations
c* = P'b 4+ e + PIAPT* , & =Pb+ e+ PIAPT
we obtain

o* - 2 = PAP(* - )

which implies

<

03 (% - HTEr -g) = @* - AT arer - H 0.

By the positive definiteness of A, it follows that
P(T* - %) =0 .,
Consequently, we have
0 = ("%) 5wk = (P"H) T b+ K elvk & (pm*) T APm*

-3 (er‘* - eT;) - i(er‘* -1

By assumption, 1A 0; hence the desired conclusion follows. Q.E.D.

Now, {f the parametric principal pivoting algorithm is applied to
the parametric linear complementarity problem (4.%9a), then either a value )
can be found for which the corresponding solution f*(i) satisfies the
condition (4.9b) as well, or no such value exists. In the first case, a

solution to the stationary onint problem is obtained. In the second case,
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there are two possibilities: either the problem (4.9) has a solution
with X\ = 0 or it has no solution at all. To determine this, we may solve

the system of linear {nequalities:

(4.10) PR=P*(0) , enN=1 ad >0
1
Theorem 3. Suppose that the above version of the parametric principal

pivoting algorithm does not compute a solution to the problem (4.9). 1If
the system (%.10) is inconsistent, then problem (4%.9)( and therefore the
stationary point problem) has no solution. On the other hand, if % is any

solution to (4.10), then (:, 0) solves (4.9).

-

Proof. By Theorem 2 and the assumption, it follows that any solution
(if it exists) to problem (4.9) must have A = 0. Suppose that (4.9) does
have a solution (=, 0). We show P~ = P~*(0). This follows from a more
general result whose proof i{s easy and omitted: If T and -2 are two
solutions to the linear complementarity problem (4.9a) for the same

value of A\, then P“ = P‘z. (C£. the proof of the last theorem.)
Consequently, {f the system (4.10) {s inconsistent, then problem (4.9)
has no solution.

Conversely, let < be any solution to the system (4.10). It suffices

to show that (%, 0) satisfies (4.%9a). Obviously,

Tap® = pTb 4+ pTap~*(0) 3 0

P’ + p
and

ST T 4 pTAP%) = (=%(0))F (PTb + PTAP=*(0)) = O .

This completes the proof of the theorem. Q.E.D.
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In what follows, we outline how the ideas presented above can be
actually carried out to solve the stationary point problem in the case
where the matrix P {s known only implicitly. First, by the column
generation technique described in the last subsection, the parametric
principal pivoting algorithm applied to (4.9a) can in fact be implemented.
The search for the suitable L can be achieved by a simple interpolation
procedure described in (7). The procedure does not involve the matrix P and is
therefore applicable. Finally, the consistency of the system (4.10) can
be determined by checking {f the vector P™*(0) {s in the set X. Notice that
this vector is equal to PK["*(O)]K where K is the index set of basic
“-variables. Since PK {5 known, P7"*(0) can be obtained. Notice also
that a solution ™ to the system (4.10) is not actually needed to obtain
a solution to the stationary point problem. This is because if the

vector P~*(0) is {n X, then it (s a desired solution.

4.3 The Unbounded Case. we extend the discussion of Section 4.1 to

treat the case where the set X i{s not necessarily bounded.

Associated with the set X is its '"homogenized" cone

Y = f(: )€R"‘l: Cx 2 ct -

n/
o
b

We assume that the dual cone Y* contains an interior point which is

*
available cgglict:lz.g/ Such a point (:*) will be used to define the
parametric vector p and is characterized by the condition:

(y*)rx+ s*t > 0 for all (:)éY\ f0)} . In particular, {t holds that

(y*)rP + 5% e >0 and (y*)r Q>0.

2/ We shall discuss more about this assumption in the Appendix.

e e e PO e A




Choose

-3

2
p = (ymTp + swe’ |, T

The reason for this choice will become obvious in a moment. We should
poiat out that it {s not necessary to compute the vector p explicitly.
In fact, its components will be generated when they are needed.

Following the analysis of Section 4.1, we consider a typical {teration
of the parametric principal pivoting algorithm applied to the linear
complementarity problem (lJ.2) with the parametric vector p chosen above.
Let K and L denote respectively, the i{ndex sets of the currently basic

+
- and S-variables. This time, we assume that % i{s also basic. The

basis matrix is then

T T |
E ] 3\
(QL APK (QL AQL 0 |

= -} -1
- \
(qJ : pJ) e P\
-2 -2 !
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According to (3.'b), the nonbasic components are given by

- - ' ) . T T ) !
3 Y = =) - - 2% - @ -
(qI pI/ /(PK b (PK) y +s*,K \ - (ch) APK (Px) APK eKA / qx
1 ]
|
' )T Tv* ‘i _T ' -2
‘ (oL, b (QL) 3 (Qi) APK (QL) )\QL 0 ; | A ™

\

\

1 | i [
\ | 0 -e: 0 o[/ ‘\:‘ cz/

Hence (&-+95)I {s ronnegative if and only {f

1

T; -1 -2 - > 2 o4 1 2
s - ' a ‘ - 8% -
(4.11a)  (Pg) D+AR L + Qq, )+ 8ly*+A(Pp, + QLpé]. > [t +08(t" -8 )]ex

. T -1 -2 -1 -2
n e 2
(&.11%) @) .b*A(PKq.K*- QLqL)*e[y*+ A(Pep  + QLpL)] } >0

AR T |
6.11 ! - 9 - 8¢ - 3
(4.11¢) ( e qx ) AerK 8 > 0

Obviously, equality holds for all values 8§ in (4.71a) and (4.1')) if K

and L are replaced by K and L respectively. Consequently, (4.1%a) and

(4.11b) hold {f and only {£f

-~

T - 1 -
Ar -~
x"(b+A(Rq, + Q9

-1 L 1 2
* -
g )+ Cly*+A@ep  +Qp )]} 3 € 4 8(t7 -s%) for all x&X .

Therefore, to determine the first value of § for which the condition (6.10)
{s violated, one may proceed as follows: Solve the parametric linear program
minimize LJ(Q\ - xr"bo-A(P 2! + iz) + a(y*+A(P 5 ! 4QL§ 4 )11 subject to x €X
' : 'S A kP 9P 71

starting with the last critical value of 2 for which the i{nequality below is

satisfied

3 1 2
(4.12) L7(3) 3t +8(° - %)
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, 1
and decreasing 2 until either it reaches below zero or a vlaue 9 is

obtained for which the inequality (4.'2) is violated. In the latter case,

either an index k, €K (and a corresponding optimal solution vector Pk )
1

or an index k; €L (and a corresponding ray vector Qk' ) is obtained as
1

well. For convenience, we let 9‘ be zero if (4.12) remains valid at § = 0 .
With the value 9' determined the ratio test (3.3) can now be carried out
comparing 9, with the maximum ratic among the basic components.
By a similar analysis, it can be shown that the second ratio test
(3.6) can be implemented by solving a parametric linear program like the one
(4.7) and by checking when a certain inequality involving the optimum
objective value and the parameter of the program (cf. (4.8)) is violated.
The details are omitted.

Finally, we point out that if K and L are the final index sets of

basic T- and %-variables, then a stationary point is given by Lx-PK’K-+QL§L .




- % CONCLUSION

In this paper, we have shown how the parametric principal pivoting
algorithm can be used to compute a stationary point of an affine function
over a polyhedral set. The success of this approach depends very much
on a proper choice of the parametric vector which &allows the algorithm to
operate solely with the basic ingredients. At this moment, there seems
to be a theoretical drawback, however. Namely, we have not yet been able
to settle the question of cycling in the implementation. One possible
way to do this would be to extend the well-known lexicographic rule (see
{2] e.g). The key issue here is the question of how to incorporate the
rule properly in the linear complementarity problem (2.2). Special care
is needed because the form of the constant vector plays a very crucial
role in the column generation technique.

Fortunately, the devil of cycling has always been (and hopefully,
will be) a theoretical concern mainly. So, even without a theoretically
justified cvcling-prevention scheme, it would seem that the technique

proposed should still deserve a try for solving practical applications.
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We esctablish
Let S be a polyhedral cone with the representations

Theorem 4.
S = Ix Cx > 0] = fx : x=P\ for some ) > 0}
Then the following are equivalent

where each generator P, is nonzero.

The vector y* {s an {nterior point of the dual cona S*

(1)
(i) (y*}t X 0 for all x€s\ {0}

(iid) (y*\r P >0

(iv) For each vector p, there exist a vector A > Q0 and a scalar

= 2 9 such that
Crk g 4+ uy*
(v) For each vector p, there exists a scalar , 2 0 such that
0= min (p + ,y*\rx
x €S
That of

(i1), and ({i{) are well-knowm.

Proof. The equivalence of (i),
({v) and (v) {s an immediate consequence of the duality theory of linear
(i1)

We now show that (i{i{) {s equivalent to (iv). Obviously,

programming.
is equivalent to the fact that for all vectors p, the system below has

no solution
4 4
x>0 , -(G" x30 and p x<0

8y Motzkin's theorem of the altermative, the latter fact {s in turn

i a2 T
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equivalent to that for each vector p, there exist a )\ > 0 and . > 0 such
-

that
- P+ CT1 - yy* =0

which {s precisely condition (iv). Q. . B

If a polyhedral cone is represented in terms of {ts generators,
then according to ({i{{), the task of finding an interior point of the dual
cone can be accomplished by solving a linear program. On the other hand,
{f the primal cone is given in terms of a system of linear inequalities,
then it may not be easy to determine whether such a point exists,
However, there are cases where this {s trivial, For i{nstance, {f the given

cone S lies in the nonnegative orthant, then the vector of ones {s

obviously a desired interior point of s* by (ii),
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